

Welcome to Argvard

Welcome to Argvard’s documentation. If you are new to Argvard, start with
Installation and read the Tutorial afterwards.

User’s Guide

	Installation

	Tutorial
	Creating a basic “Hello World!”-Application

	Dealing with positional arguments

	Defining Options

	Defining Commands

	Signatures

API Reference

	API
	Application Object

	Command Object

	Context Object

Additional Information

	License

	Changelog
	Version 0.3.0

	Version 0.2.1

	Version 0.2.0

	Version 0.1.0

Installation

In order to get started you need Python 2.7, Python 3.3 or a higher Python 3
version. Argvard is tested on CPython and PyPy but using other interpreters
should work just as well.

It is recommended that you install Argvard – or any other Python library –
inside a virtual environment, created with virtualenv [http://www.virtualenv.org/]. This allows you to
isolate the projects you are working on from each other and the system.

Within a virtual environment you can install Argvard using pip [http://www.pip-installer.org/]:

$ pip install argvard

This should take just a moment and then you are good to go.

Tutorial

This tutorial teaches you how to create command line applications using
Argvard. We will explore the framework step-by-step using the example of a
simple “Hello, World!” application, which we are going to over-engineer to
explore the features provided by Argvard.

	Creating a basic “Hello World!”-Application

	Dealing with positional arguments
	Default arguments

	Repetitions

	Defining Options

	Defining Commands

Creating a basic “Hello World!”-Application

The first step on our journey will be to create a simple “Hello World!”
application. The first part of that application consists of importing what we
need:

from argvard import Argvard

The Argvard object is central to every Argvard application
and – for now – the only thing we are going to need. The next part of the
application is creating such an object:

application = Argvard()

As you can see this is trivial as we do not have to pass it any arguments. As
you can see from the name I gave it, for all intents and purposes it is the
application. The next step is making that the application do something:

@application.main()
def main(context):
 print(u'Hello, World!')

The application.main decorator is used to register what in Argvard terms is
called the main function. If you are familiar with other programming
languages, you may be aware that a main function of some form can be found in
many languages. In languages in which it exists it acts as an entry point and
is automatically called when your application is started.

This case is similiar, main is a function that will always be called by the
application after any options have been parsed. The main function is
supposed to do, whatever your application is supposed to do.

The last step is calling the application:

if __name__ == '__main__':
 application()

If you are not already familiar with the pattern, __name__ is a special
variable the interpreter sets to the name of the current module. If the module
is being executed directly (and is not just imported), __name__ will be set
to '__main__'. This ensures that application is not called, unless the
module is executed directly, which makes it possible to import the module
without any side effects.

Once you have typed that into your editor, save it as hello.py and execute
it with python hello.py. It should print “Hello, World!” and exit.

Continue with Dealing with positional arguments.

Dealing with positional arguments

Now that we have managed to greet the world, let us be more specific about whom
we greet or at least let users be able to do that:

@application.main('name')
def main(context, name):
 print(u'Hello, %s!' % name)

Replace the main function defined in hello.py with the code above. This
defines a signature for the main function. A signature defines which positional
arguments something takes, in this case a main function.

This signature defines one required positional argument called name.
Positional arguments are passed to the function under the names defined in the
signature.

Now in order to run hello.py you have to call it like this:

$ python hello.py Daniel
Hello, Daniel!

Obviously you can replace “Daniel” with your own name.

Default arguments

This does introduce a problem though because if we call run hello.py as we
did previously, we get this:

$ python hello.py
error: name is missing
usage: hello.py [-h|--help] <name>

If we want to have backwards compatibility, we need to make the name an
optional positional argument:

@application.main('[name]')
def main(context, name=u'World'):
 print(u'Hello, %s!' % name)

Now we can run the application with a name:

$ python hello.py Daniel
Hello, Daniel!

or without it:

$ python hello.py
Hello, World!

Repetitions

Now that we have managed to greet one person or well everyone. Let us try to
greet multiple people:

@application.main('[name...]')
def main(context, name=None):
 if name is None:
 name = [u'World']
 if len(name) == 1:
 print(u'Hello, %s!' % name[0])
 elif len(name) == 2:
 print(u'Hello, %s and %s!' % (name[0], name[1]))
 else:
 print(u'Hello, %s and %s!' % (u', '.join(name[:-1]), name[-1]))

The function does quite a bit more than the previous ones, to achieve a nice
formatting. Apart from that what has really changed is that we have added ...
to the end of the argument in the signature.

Now we can greet any number of people:

$ python hello.py
Hello, World!
$ python hello.py Daniel
Hello, Daniel!
$ python hello.py Daniel Horst
Hello, Daniel and Horst!
$ python hello.py Daniel Horst Peter
Hello, Daniel, Horst and Peter!

See also

Signatures

Continue with Defining Options.

Defining Options

So far we have concerned ourselves with whom we greet and not with how, let us
change. How an application does things can usually be changed by using options,
unfortunately there is not much you can change when saying hello to someone, so
we are going to turn our application into something much more general, that is
an application that greets people:

@application.option('--greeting greeting')
def greeting(context, greeting):
 context['greeting'] = greeting

This is quite similar to how main functions are defined. The difference is
that the signature in case of an option, includes the name of an option.

Another thing we do is use the context object that we have ignored so far.
This object is basically a dictionary that is passed around to capture the
state of the application. You are supposed to use it to store information
gathered in options.

Now we can use this information in the context in a main function:

@application.main('[name...]')
def main(context, name=None):
 if name is None:
 name = [u'World']
 greeting = context.get('greeting', u'Hello')
 if len(name) == 1:
 print(u'%s, %s!' % (greeting, name[0]))
 elif len(name) == 2:
 print(u'%s %s and %s!' % (greeting, name[0], name[1]))
 else:
 print(u'%s %s and %s!' % (greeting, u', '.join(name[:-1]), name[-1]))

Now we can use the –greeting option to change the way our application greets
people:

$ python hello.py --greeting Hi
Hi, World!

Continue with Defining Commands.

Defining Commands

If you develop larger command line applications, like pip [http://www.pip-installer.org/] which you probably
used to install Argvard, your application often does not perform a specific
action like greeting someone but instead allows the user to perform multiple
distinct actions.

In the case of pip such an action is installing or uninstalling something.
These are fundamentally different actions, not just in what they operate on,
how they operate but in what they do. We do not want to choose between these
actions based on positional arguments or options, we need a different way
to express these: commands.

A Command is very much like an argvard object. A command
requires a main function that performs something and we can register options
on a command.

Let us create a simple calculator as an example:

from argvard import Argvard, Command

application = Argvard()

@application.main()
def main(context):
 context.argvard(context.command_path + ['--help'])

The calculator, unless called with a command, has nothing useful to do. So
within the main function we recursively call the application with the –help
option, to provide the user with a help message that explains how the
application should be used.

Now comes there interesting part, defining the commands:

add = Command()
@add.main('a b')
def add_main(context, a, b):
 print(int(a) + int(b))

sub = Command()
@sub.main('a b')
def sub_main(context, a, b):
 print(int(a) - int(b))

As you can see and as mentioned above, command objects are very similar to
argvard objects in how they are used. We are not doing this in the tutorial but
you could also add options to the add or sub commands. Now that the commands
have been defined you have to register them with the application:

application.register_command('add', add)
application.register_command('sub', sub)

The string passed to register_command() is the name, which
is used on the command line to call the command we are registering. In case you
were wondering, you can also register commands with other commands.

Finally we call the application, just as we did in our previous “Hello World”
application:

if __name__ == '__main__':
 application()

If you run the application the commands can be invoked as expected:

$ python calc.py add 1 1
2
$ python calc.py sub 1 1
0

Congratulations! You have now learned everything you need to know about
Argvard, to create command line applications.

Signatures

Signatures are used to define positional arguments of an option, command or the
application. A signature consists of zero or more words separated by spaces.

A word can be a name, – and if the signature does not describe the
positional arguments of an option – a repetition or an optional.

A name is a python identifier, that an argument will be bound to.

A repetition is a name followed by ..., it matches one or more arguments,
all of which will be bound to the name.

An optional is a name or repetition followed by zero or more words enclosed
in brackets.

For a short overview this is the grammar in EBNF [http://en.wikipedia.org/wiki/Extended_Backus-Naur_Form]:

signature = [word { " " word }]
word = name | repetition | optional ;
name = (* Any valid Python identifier *) ;
repetition = name "..." ;
optional = "[" (name | repetition) { word } "]" ;

API

	
argvard.__version__

	The version as a string.

	
argvard.__version_info__

	The version as a tuple, containing the major, minor, and bugfix version. You
should use this, if you need to implement any version checks.

Application Object

	
class argvard.Argvard(defaults=None)

	The argvard object is the central object of the command line application.

Instances are callable with the command line arguments, sys.argv [https://docs.python.org/2/library/sys.html#sys.argv] by
default.

The object acts as a registry for options and commands and calls them as
necessary.

	Parameters:	defaults – A dictionary containing the initial values for the
context.

	
from_main(signature='')

	A decorator that creates an instance and registers the decorated
function as main function, see main() for more information.

New in version 0.2.

	
main(signature='')

	A decorator that is used to register the main function with the given
signature:

@app.main()
def main(context):
 # do something
 pass

The main function is called, after any options and if no command has
been called.

	
option(signature, overrideable=False)

	A decorator for registering an option with the given signature:

@app.option('--option')
def option(context):
 # do something
 pass

If the name in the signature has already been used to register an
option, a RuntimeError is raised unless the registered option
has been defined with overrideable set to True.

	Parameters:	
	signature – The signature of the option as a string.

	overrideable – If True the registered option can be overridden.

	
register_command(name, command)

	Registers the command with the given name.

If the name has already been used to register a command a
RuntimeError will be raised.

Command Object

	
class argvard.Command(defaults=None)

	A command - like an argvard object - is a registry of options and commands,
that represents a distinct action.

Commands can be registered with any number of argvard objects, any number
of times (under different names.)

	Parameters:	defaults – A dictionary containing the initial values for the
context, any values already contained in the context
once the command is called will not be overridden with a
default value.

	
from_main(signature='')

	A decorator that creates an instance and registers the decorated
function as main function, see main() for more information.

New in version 0.2.

	
main(signature='')

	A decorator that is used to register the main function with the given
signature:

@app.main()
def main(context):
 # do something
 pass

The main function is called, after any options and if no command has
been called.

	
option(signature, overrideable=False)

	A decorator for registering an option with the given signature:

@app.option('--option')
def option(context):
 # do something
 pass

If the name in the signature has already been used to register an
option, a RuntimeError is raised unless the registered option
has been defined with overrideable set to True.

	Parameters:	
	signature – The signature of the option as a string.

	overrideable – If True the registered option can be overridden.

	
register_command(name, command)

	Registers the command with the given name.

If the name has already been used to register a command a
RuntimeError will be raised.

Context Object

	
class argvard.Context(argvard, application_name)

	The context object is a dictionary, passed to options and main functions,
which they can use to store information.

It further provides information useful for introspection and debugging
through attributes.

	
argvard

	The current application.

	
command

	The current command or None.

	
command_path

	A list containing the name of the application and the names of all
commands called so far.

	
caller

	The current command or argvard object.

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Changelog

Version 0.3.0

	Execution is now delegated to --help, if no main function has been
defined.

Version 0.2.1

	Fixed typos in the documentation.

Version 0.2.0

	Added argvard.Argvard.from_main and
argvard.Command.from_main to reduce overhead when creating simple
applications or commands.

Version 0.1.0

Initial release.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 argvard	

Index

 _
 | A
 | C
 | F
 | M
 | O
 | R

_

 	
 	__version__ (in module argvard)

 	
 	__version_info__ (in module argvard)

A

 	
 	argvard (argvard.Context attribute)

 	
 	Argvard (class in argvard)

 	argvard (module)

C

 	
 	caller (argvard.Context attribute)

 	command (argvard.Context attribute)

 	
 	Command (class in argvard)

 	command_path (argvard.Context attribute)

 	Context (class in argvard)

F

 	
 	from_main() (argvard.Argvard method)

 	(argvard.Command method)

M

 	
 	main() (argvard.Argvard method)

 	(argvard.Command method)

O

 	
 	option() (argvard.Argvard method)

 	(argvard.Command method)

R

 	
 	register_command() (argvard.Argvard method)

 	(argvard.Command method)

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Argvard

 		Installation

 		Tutorial

 		Creating a basic “Hello World!”-Application

 		Dealing with positional arguments

 		Default arguments

 		Repetitions

 		Defining Options

 		Defining Commands

 		Signatures

 		API

 		Application Object

 		Command Object

 		Context Object

 		License

 		Changelog

 		Version 0.3.0

 		Version 0.2.1

 		Version 0.2.0

 		Version 0.1.0

